
Contents

1 The Build Syndrome 1
1.1 Introduction . 1
1.2 Using Utility Libraries . 3
1.3 OpenGL Agnosticism . 5
1.4 Configuration Spaces . 8
1.5 Meta-builds and CMake 9
1.6 CMake and the Configuration Space 10
1.7 CMake and Platform Specifics 15
1.8 Conclusion . 21
Bibliography . 21

i

The Build Syndrome
Jochem van der Spek and Daniel Dekkers

1.1 Introduction

In the current age of desktop, mobile, and console computing the number
of platforms, operating systems, and OpenGL versions that are in active
use has become so large that developing and deploying our application for
all those different configurations has become a trying and time consuming
part of development. When a game studio wants to release their latest title
on as many platforms as possible, they will need to manage a combinatoric
explosion of all the different configuration parameters.

OpenGL(1.0-4.2) OpenGL|ES(1.0/2.0)

OSX desktop GLUT, QT,
wxWidgets, X11

QT

iOS embedded N/A CoreAnimation (iOS2.0/3.0)

SGI desktop GLUT, QT, X11 EGL

Windows desktop GLUT, QT,
wxWidgets, EGL

EGL

Windows embedded N/A EGL, QT

Unix desktop GLUT, QT,
wxWidgets, EGL

EGL

Linux desktop GLUT, QT,
wxWidgets, X11,
EGL

EGL

Linux embedded N/A EGL/QT

Android embedded N/A Android(1.0/2.2), EGL

Symbian embedded N/A EGL, QT

Blackberry embedded N/A BlackberryOS(5.0/7.0)

Webbrowsers N/A WebGL(ES2.0 only)

Table 1.1. Overview of the main OpenGL implementations on the various plat-
forms.

We recognize two steps in the process to reduce the complexity of this
task. The first is to write OpenGL agnostic code, meaning that the code
encapsulates the platform- and OpenGL version specific details into classes
that are fully transparent to any combination of platform and OpenGL ver-

1

2 CONTENTS

sion. The second method is to use a meta-build system that wraps all that
code into a usable project for many different IDE’s on many different plat-
forms. Each platform comes with it’s own set of APIs for creating a window
to draw. Some of these APIs support OpenGL|ES for Embedded Systems,
even on non-embedded desktop platforms such as the iPad simulator on
OSX, while some only support the OpenGL version that is enabled by the
OpenGL drivers on that platform. Different OpenGL implementations on
various platforms can be seen in Table 1.1. A complete list can be found on
the OpenGL.org website [implementations]. A completely different way of
achieving the same goal is to use JavaScript with WebGL and is described
in detail in ??. In this article we will focus on C++/Objective-C.

OpenGL1.0-4.2 OpenGL|ES1.0-2.0

iOS N/A CoreAnimation(iOS2.0/3.0)

Windows GLUT, QT, EGL EGL

OSX GLUT, QT N/A

Table 1.2. The selection of APIs and subset of platforms used in this article.

As a demonstration, we show how to implement a very minimalis-
tic OpenGL program on a subset of all the possible platforms, as can
be seen in Table 1.2. For the sake of simplicity, we further limit our-
self to considering only APIs that interface the creation of the so-called
OpenGL Drawing Context, which specifies to the operating system how
a pixel is to be drawn to the screen. See http://www.opengl.org/wiki/
Creating an OpenGL Context for a more extensive discussion of this topic.

In describing the use of our selection of APIs on the subset of platforms
we draw from the experience of writing the ‘RenderTools’ [RenderTools]
software library. The library was created over the course of the past three
years (2008-2011) to serve as a codebase to create any conceivable OpenGL
application on many platforms. We tried to keep the classes lightweight
and the library in it’s simplest form depends as little as possible on ex-
ternal libraries. We used the whimsically named Extension Wrangler Li-
brary, or GLEW [GLEW], to manage the various OpenGL extensions on
each platform. Many deprecated math functions such as glRotate, glOrtho,
glPerspective were implemented in OpenGL compliant Matrix classes. Cur-
rently only GLfloat types are supported, though abstraction of the type to
a compiler setting is on the wish-list. There are many such open issues,
but we believe that the design of the library is sound and can be built
upon and extended by the community, hence we release it under the GNU
Public License (GPL) which ensures open source distribution but we also
allow binary distribution under licenses that are free for artists, charities,
contributors and educators.

1. The Build Syndrome 3

1.2 Using Utility Libraries

Where the predecessor to OpenGL, Silicon Graphics’ IrisGL, had functions
to create a window to draw in, OpenGL does not. This makes OpenGL
portable to different operating systems and Windows-APIs but also makes
it difficult to set up without intimate knowledge of the underlying Windows-
API of the platform at hand. Each platform has it’s own platform-specific
implementation of the for creating and OpenGL Context and a window,
such as ‘WGL’ [WGL] on Windows, ‘GLX’ [GLX] on XWindows systems
and Cocoa on OSX. Fortunately, there are many cross-platform software
libraries that unify those platform-specific APIs, one of the most prominent
being the OpenGL Utility Toolkit, or ‘GLUT’ [Kilgard] for short. GLUT
was originally written by Mark J. Kilgard to accompany the first OpenGL
Programming Guide in 1994, the so called red book, and even though it
is no longer supported, it has been in use ever since. Because of licensing
issues GLUT is no longer maintained, but a re-implementation that is
more-or-less actively maintained called ‘FreeGlut’ [Olszta] is also available.
GLUT is standard with OSX/XCode, and can be easily downloaded and
installed for Windows and Linux. An extensive list of the various toolkits
for different platforms can be found on the OpenGL website [toolkits].

#include <glut.h>
void displayFunc(void){

glClearColor (0.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT);
glViewport (0, 0, 400, 400);

glColor4f (1.0, 0.0, 0.0, 1.0);
GLfloat vertices [8] = { -0.1 , -0.1 ,0.1 , -0.1 ,0.1 ,0.1 , -0.1 ,0.1};
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer (2, GL_FLOAT , 0, vertices);
glDrawArrays(GL_QUADS , 0, 4);

glutSwapBuffers ();
}

void main(int argc , char ** argv){
glutInit(& argc , argv);
glutInitWindowSize(400, 400);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA);
glutCreateWindow("GLut");
glutDisplayFunc(displayFunc);
glutMainLoop ();

}

Listing 1.1. A minimal OpenGL example using GLUT.

4 CONTENTS

1.2.1 Hello World With GLUT

In the example in Listing 1.1, the main routine initializes the GLUT library
and then tells the windowing system to create an OpenGL window that is
double-buffered and has an RGBA pixel format. Then it registers a display
callback that is called the first time the window is displayed on the screen,
and when a previously obscured part of the window is shown again. Finally,
it calls glutMainloop which is a bit typical, because GLUT never returns
from this function. GLUT’s work is now done, and it gives control to the
window it has created. This example can be built and run, provided that
the compiler or development IDE knows the include- and linker paths in
order to find glut.h and link against the correct library (Glut.a on linux,
GLUT.framework on OSX, glut32.lib on Windows and so on). The rather
amazing thing is that this code runs exactly as it is printed here on all the
desktop systems listed in 1.1, and has done so since it’s inception for the
systems that were available at that time.

1.2.2 Hello World With Qt

The same example can be written for Qt [QT], which can hardly be cat-
egorized as a ‘Utility library’ as it is a complete Graphical User Interface
framework including a GUI-designer, audio facilities, etc. but in the con-
text of drawing OpenGL content we can regard the QtOpenGL component
of the Qt suite as similar to GLUT in that it facilitates the creation of an
OpenGL context and window for us. Qt originated from Quasar Technolo-
gies, later TrollTech, in 1992 and was bought by Nokia in 2008. The library
is now available under the LGPL Open Source license, and also under a
commercial license from Nokia.

Compiling and linking the Qt example in Listing 1.2 is not quite as
simple as building the GLUT example, because it requires the installation
of the entire Qt suite, but the developers have made it as easy as possible
by providing a configuration utility that lets us select which options we
want to include and then generates the build-scripts for us.

1.2.3 Hello World With EGL

Finally, the same example written in ‘EGL’ [EGL] can be seen in List-
ting 1.3. EGL interfaces OpenGL|ES with the native windows-API on a
wide variety of platforms, including mobile and desktop. However, using
EGL is a bit more involved because unlike Qt and GLUT, EGL does not
provide a mechanism for creating a window in a platform-independent way.
EGL allows us to create the rendering context and a drawing surface, and
connect it to an existing window or display, but no more. We can create a
native display ourselves, or we can use the EGL DEFAULT DISPLAY flag

1. The Build Syndrome 5

#include <QtCore/QtCore >
#include <QtGui/QtGui >
#include <QtOpenGL/QtOpenGL >

class MyView : public QGLWidget {
Q_OBJECT
public:

MyView(QWidget * parent = 0) :
QGLWidget(QGLFormat(QGL:: DoubleBuffer | QGL::Rgba), parent){

resize(400, 400);
}
~MyView (){}

protected:
void paintGL(QGLPainter *painter){

makeCurrent ();

glClearColor (0.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT);
glViewport (0, 0, 400, 400);

glColor4f (1.0, 0.0, 0.0, 1.0);
GLfloat vertices [8] = { -0.1 , -0.1 ,0.1 , -0.1 ,0.1 ,0.1 , -0.1 ,0.1};
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer (2, GL_FLOAT , 0, vertices);
glDrawArrays(GL_QUADS , 0, 4);

}
};

int main(int argc , char **argv){
QApplication app(argc , argv);
MyView view;
return app.exec();

}

Listing 1.2. A minimal OpenGL example using Qt.

to obtain the default display for the current system. Either way, we need
to create a native window on that display.

Since we are now building for OpenGL|ES, the convenient glOrtho,
glMatrixMode, etc. functions are not in the API, and we need to re-
implement them in our own library.

1.3 OpenGL Agnosticism

In order to transparently differentiate the request from the programmer to
draw a red square to the different GL APIs we can abstract the request
completely away from any OpenGL specifics but would like to offer the ease
and flow of the immediate-mode fixed-function API. We also want to stay

6 CONTENTS

void main(void){
EGLint attribList [] = { EGL_BUFFER_SIZE , 32,

EGL_DEPTH_SIZE , 16,
EGL_NONE };

// even though we may obtain the EGL_DEFAULT_DISPLAY , we need
// to create a handle to a window in which we create the drawing
// surface , a HDC on windows , a Display on X11 , etc.
EGLNativeDisplayType nativeDisplay = EGL_DEFAULT_DISPLAY;
EGLNativeWindowType nativeWindow = platformSpecificCreateWindow ();
EGLDisplay iEglDisplay = eglGetDisplay(nativeDisplay);
eglInitialize(iEglDisplay , 0, 0);

EGLConfig iEglConfig;
EGLint numConfigs;
eglChooseConfig(iEglDisplay ,

attribList ,
& iEglConfig ,
1,
&numConfigs);

EGLContext iEglContext = eglCreateContext(iEglDisplay ,
iEglConfig ,
EGL_NO_CONTEXT ,
0);

EGLSurface iEglSurface = eglCreateWindowSurface(iEglDisplay ,
iEglConfig ,
& nativeWindow ,
0);

// For brevity , we omit a display function similar to
// the one in the GLUT and Qt examples

}

Listing 1.3. A minimal OpenGL example using EGL.

close to the OpenGL naming conventions so that when we think about the
objects that we use, we hear the same names as those that are used in the
OpenGL registry. Thus, we want a Vertexbuffer class that is completely
transparent to the underlying implementation.

The code in Listing 1.4 can be used for all the different dialects of the
GL but internally this seemingly simple piece of code fragments into at
least three different code-paths.

1. using a VBO (available in all versions).

2. using a VBO with a VAO (from OpenGL3.0).

3. use programs (available in OpenGL2.0 and ES|2.0)

Implementation of the simple example becomes far from trivial. To
accommodate for the various versions of OpenGL within the same code-
base, and to allow different implementations of the codebase for different

1. The Build Syndrome 7

Vertexbuffer quad;
quad.color(1.0, 0.0, 0.0);
quad.begin(GL_QUADS);
quad.vertex(-10.0, -10.0);
quad.vertex(10.0, -10.0);
quad.vertex(10.0, 10.0);
quad.vertex(-10.0, 10.0);
quad.end();

Listing 1.4. Using a RenderTools::Vertexbuffer to emulate the immediate-mode
API.

platforms, we made extensive use of ‘selective compilation’ by defining
compiler flags that specify the platform and OpenGL version that we com-
pile for. A typical example of such conditional compilation is the Ren-
derTools::ViewController class, that encapsulates the OpenGL versions 1.1
through 4.x, OpenGLES|1.x and 2.x, the different APIs Qt, GLUT, EGL,
Cocoa, EAGL, and even the different languages C++ and Objective-C.
To accommodate for communication between the different APIs and lan-
guages that are used simultaneously at runtime on different platforms we
implemented the ViewController as a global static singleton that can be
accessed from anywhere in the system. This is the way that events from the
Objective-C based iOS are passed along to the C++ hierarchy of Render-
Tools. When a ViewController is instantiated, it starts life as a platform
specific class such as the IOSViewController on iOS, but is exposed to the
developer simply as a ‘ViewController’ class by means of conditional com-
pilation. If the RenderTools library is compiled for iOS, RT IOS is defined
and the ViewController class will be a typedef of IOSViewController, for
GLUT on windows, OSX or Linux, RT GLUT will be defined and View-
Controller will be a typedef of GLUTViewController, etc. The different
implementations of the ViewController class are wrapped in #ifdef/#endif
blocks so as to include or exclude the code from the compilation. Combin-
ing these insights resulted in the ‘HelloWorld’ example that can be found in
the RenderTools/examples directory and that can be compiled and run on
all the platforms and OpenGL versions supported by RenderTools, with-
out changing one single letter of code, and in fact with just one single
configuration action as we shall see in the next section.

All of this together leads to a massive number of possible configuration
states. We have the various libraries that we need to include, conditional
compilation flags, different OpenGL libraries, possibly third-party libraries
depending on the platform, and finally different IDE’s on different plat-
forms for which we need to create and maintain project files in order to

8 CONTENTS

#include <RenderTools.h>
class HelloWorldView : public RenderTools :: RendergroupGLView {

public:
static PropertyPtr create(const RenderTools :: XMLNodePtr & xml){

boost::shared_ptr < HelloWorldView > p(new HelloWorldView ());
return(boost:: dynamic_pointer_cast < RenderTools :: AbstractProperty←↩

, HelloWorldView >(p));
}
virtual const std:: string getTypeName(bool ofComponent) const{ ←↩

return("HelloWorldView"); }
virtual void onInitialize(void){

m_buffer = RenderTools :: Vertexbuffer :: create ()->getSharedPtr < ←↩
Vertexbuffer >();

m_buffer ->begin(GL_TRIANGLES);
m_buffer ->color(Vec3(1.0, 0.0, 0.0));
m_buffer ->vertex(Vec2(-10.0, -10.0));
m_buffer ->vertex(Vec2(10.0, -10.0));
m_buffer ->vertex(Vec2(10.0, 10.0));
m_buffer ->vertex(Vec2(10.0, 10.0));
m_buffer ->vertex(Vec2(-10.0, 10.0));
m_buffer ->vertex(Vec2(-10.0, -10.0));
m_buffer ->end();

}
virtual void onRender(const RenderTools :: ComponentFilterPtr & ←↩

components){
m_buffer ->render(GEOMETRIES);

}
RenderTools :: VertexbufferPtr m_buffer;

};

int main(int argc , char ** argv){
RenderTools :: initialize(argc , argv);
RenderTools :: Factory :: registerContainerType("HelloWorldView", ←↩

HelloWorldView (), HelloWorldView :: create);
RenderTools ::run("<app type =\" Application \" ><viewcontroller type←↩

=\" HelloWorldView \" /></app >");
}

Listing 1.5. The platform-independent and OpenGL-version agnostic minimal
example.

build all the various combinations.

1.4 Configuration Spaces

Now that we have defined an abstraction layer over the different OpenGL
versions a next logical step is to further investigate platform-independence.
In order to build the ‘agnostic’ OpenGL example we have to introduce
different platforms and a coupling between OpenGL versions and plat-
form specifics. To start administrating this increasing complexity, we in-

1. The Build Syndrome 9

troduce the concept of a configuration space. A configuration space is
an exhaustive enumeration of all the possible configuration flags, where
a configuration flag may involve the current platform, OpenGL version,
and/or external library, either related to OpenGL like GLUT or EGL or
independent of the rendering like Boost [Boost] or Bullet physics [Couw-
mans]. We create names for these configuration flags within the names-
pace of RenderTools by prefixing the flag with RT , such as RT APPLE,
RT WIN32, RT GLUT, RT IOS, RT ES1 etc. which are treated as stan-
dard C preprocessor defines. Some RT [VALUE] definitions depend on con-
text and are implied by the platform the build is performed on (RT APPLE,
RT WIN32), some are dictated by the OpenGL version that is targeted
(RT ES1 or RT ES2) and some are required for including the third-party
external libraries (RT GLUT, RT BULLET). Any one combination of flags
out of the entire configuration space is called a configuration state.

Examples of configuration states are:

• <RT WIN32, RT GLUT, RT DEBUG, RT BULLET>A Windows
build, using GLUT for the windowing interface, in debug mode, using
Bullet as an external library.

• <RT APPLE, RT GLUT>A Mac OS X release build, using GLUT
for the windowing interface.

• <RT WIN32, RT EGL, RT ES2>A Windows release build, using
EGL as the interface between OpenGL|ES2.0 and Windows.

• <RT APPLE, RT IOS, RT ES1, RT DEBUG>An iOS build for iPhone
and iPad, using OpenGL|ES1 fixed function pipeline, to support ear-
lier devices, in debug mode.

Not all configuration states are valid. We can not simultaneously build
for RT ES1 and RT ES2 and some third-party libraries are mutually ex-
clusive (e.g. RT BULLET and RT BOX2D).

1.5 Meta-builds and CMake

One of the most time consuming aspects of platform independent program-
ming is the cumbersome task of defining all the individual settings for the
different IDE’s: Visual Studio on Windows, Xcode on Apple or makefiles
on Unix-based systems. Recently, several so called meta-build, or build
automation systems have been gaining popularity to aid in this task. Ex-
amples of meta-build systems are ‘premake’ [premake] or ‘waf’ [waf].

The sheer quantity of settings in IDE’s can be overwhelming. The
meta-build system creates sensible defaults for all of them and if we want

10 CONTENTS

to adjust, we adjust locally via the configuration files. In this way, the
exceptions are clearly visible in isolation, instead of hidden in a long enu-
meration of settings in the IDE.

An advantage of a meta-build system is that it gives the opportunity
to migrate back and forth between different versions of an IDE. In almost
every IDE it is a very painful process to go back to a previous version,
when all the project files have been converted to a newer version. Another
advantage of a meta-build system is the relative ease in which projects
can be shared between different developers. Every developer typically has
slightly different paths to their sources or has adjusted a few settings in
the IDE to achieve a local successful build. This makes exporting project
files directly to other developers undesirable. With meta-build systems,
developers generate fresh project files themselves, out of the source tree,
after having adjusted a few absolute paths clearly stated in configuration
files in the build system. A rather unexpected advantage we found while
developing, the latest version of Xcode, version 4.0.2 on Mac OS X Snow
Leopard, proved to be quite unstable and we were a lot more productive
developing in Visual Studio, even though the final target would be an iOS
application. Meta-builds let the developer choose his favorite development
IDE.

One of the more popular and well established tools is CMake [CMake],
a free, platform-independent, open-source build system. CMake works with
human readable configuration files, always named “CMakeLists.txt”, that
contain CMake scripts and exist in directories of the source tree. These
CMake configuration files link to each other via the CMake ADD SUBDIRECTORY()
command. A tree traversal is performed starting from a top-level CMake
configuration file, passing through the sources, creating project setups for
libraries and executables as it goes. After this so called configure pro-
cess, CMake generates IDE project files (Visual Studio, Xcode) or generate
makefiles on Unix based systems. In daily practice, we typically lose our
fixed, static platform dependent project files and generate them dynami-
cally every time a change is made in the build configuration. The CMake
structure and especially the syntax takes some time getting used to, but
the advantage is that we only have to learn a single language. Traditional
makefiles are not much easier to read and only give platform/compiler spe-
cific results.

1.6 CMake and the Configuration Space

In a top-level CMake configuration file we can fit our concept of the con-
figuration state. The RT [VALUE] elements of the configuration state can
be mapped directly onto so called options in CMake. These options are

1. The Build Syndrome 11

communicated to the developer and can be adjusted in the CMake GUI
(Figure 1.1).

Figure 1.1. The CMake (2.8.6) GUI.

We define the configuration state in a CMake includable file “configu-
rationspace.cmake”. In this file, we not only set the various RT [VALUE]
options, but also, based on these settings, set include directories and add
definitions. A boolean RT [VALUE] that is either “ON” or “OFF” in
CMake, will be passed on to the compiler as a preprocessor definition with
the CMake commands:

IF(RT_[VALUE]) ADD_DEFINITION(-DRT_[VALUE])

Furthermore, we have to locate third-party libraries such as GLUT,
Bullet, Boost, etc., that are needed for this particular configuration state.
These paths are developer dependent, so they can not be known in advance.
CMake provides a find package() mechanism to find the packages after a
root path is set. It also searches in platform specific standard locations, in
case the libraries are installed system-wide. If the package finding is omit-
ted in this phase, the individual CMake configuration files of RenderTools
will invoke find package() calls themselves for the libraries it needs. As a
whole, configurationspace.cmake creates a context from which the library
as well as the application(s) can be built.

A typical main development source tree with CMake configuration files
is shown in Figure 1.6. In this directory structure, /rendertools is the

12 CONTENTS

+ development
(CmakeLists.txt)
+ ARenderToolsApp

CMakeLists.txt
+ src
+ rsrc
+ config

+ rendertools
CMakeLists.txt
+ src
+ examples

CMakeLists.txt
+ HelloWorld

CMakeLists.txt
+ src
+ rsrc
+ config

+ CameraTest
CMakeLists.txt
+ src
+ rsrc
+ config

+ ...
+ config

configurationspace.cmake
+ bullet (external)

CMakeLists.txt
+ src

+ boost (external)
+ glut (external)
+ ...

Listing 1.6. A typical main development source tree with CMake configuration
files.

directory that contains the “suite” containing the library and the examples.
It contains a CMakeLists.txt that is a logical start of a build, see the
“Where is the source code” entry in the screenshot of the CMake GUI,
Figure 1.1. With the project that is generated from this CMakeLists.txt
we can build the library based on the RT [VALUE] settings we choose and
build the examples that are depending on this library.

The general structure of a top-level CMakeLists.txt in a RenderTools
context looks like:

1. Include configurationspace.cmake to define the configuration state
<RT APPLE, RT DEBUG, RT IOS,...>, set the paths to the (ex-
ternal) third-party libraries, add include directories and pass on def-
initions that are needed for this particular configuration state.

2. Recurse into the actual source code directory of the RenderTools li-
brary by invoking ADD SUBDIRECTORY(rendertools/src). If we

1. The Build Syndrome 13

don’t want to build RenderTools from source we can omit this step
and link to a binary pre-built RenderTools from the applications di-
rectly.

3. Recurse source code directory of a RenderTools dependent applica-
tion, or an intermediate directory representing a set of applications
as is the case with the examples.

The CMakeLists.txt of the RenderTools library itself, located in ren-
dertools/src, has a simple structure:

1. Create a new project for the lib

PROJECT(RenderTools)

2. Gather the RenderTools sources

FILE(RT_SOURCES ...)

3. Combine with sources from third-party libraries, depending on the
ones defined for inclusion by the RT [VALUE] options, if RT SOURCE
is defined. Or, if RT SOURCE is not defined, link third-party li-
braries directly.

4. Create a library with these sources

ADD_LIBRARY(RenderTools ${RT_SOURCES})

One could imagine RenderTools being distributed as a set of prebuilt
binaries, which would actually be a large collection for all the different
configuration states on all the different platforms. Instead, we chose to let
developers build RenderTools from source. We feel we can do so because we
supply the sources, assist in the build process via the CMake configuration
files, and provide sensible defaults for common configurations.

The CMakeLists.txt of an intermediate directory that contains vari-
ous applications simply recurses into these source code directories. As an
example, the CMakeLists in /Examples looks like:

1. Create a new project for this application suite

PROJECT(Examples)

2. Recurse into lower level source directories:

14 CONTENTS

ADD_SUBDIRECTORY(HelloWorld)

ADD_SUBDIRECTORY(CameraTest)

...

Finally, the CMakeLists.txt in the directories of individual applications
have the following structure:

1. Create a new project for the application

PROJECT(HelloWorld)

2. Gather application specific sources and resources

FILE(APP_SOURCES ...)

FILE(APP_RESOURCES ...)

3. Create an executable with these sources and resources

ADD_EXECUTABLE(HelloWorld

${APP_SOURCES} ${APP_RESOURCES})

4. Link in the RenderTools library

TARGET_LINK_LIBRARY(HelloWorld RenderTools)

5. Set the dependency

ADD_DEPENDENCY(HelloWorld RenderTools)

For applications residing outside the /rendertools directory, e.g. ARen-
derToolsApp, we can write a CMakeLists.txt for the higher level in /de-
velopment that includes ARenderToolsApp and the RenderTools library.
Such a top-level CMakeLists.txt file looks like:

PROJECT(MyDailyWork)

INCLUDE(rendertools/config/configurationspace.cmake)

ADD_SUBDIRECTORY(ARenderToolsApp)

Recurse directly into the library, avoiding double

inclusion of configurationspace.cmake and the examples.

ADD_SUBDIRECTORY(rendertools/src)

Note that this is a volatile file and changes regularly, depending on the
projects you are working on at that particular moment.

1. The Build Syndrome 15

1.7 CMake and Platform Specifics

The CMake structure mentioned above is the general structure that most
CMake-based builds follow. There are of course a lot of platform specific
peculiarities that have to be dealt with. Some of the non-trivial ones we
encountered are listed below.

1.7.1 Windows

Windows is fairly straightforward. GLUT or EGL handles the windowing
interface. OpenGL as binary library is available with the operating system
or via a dynamic link library (dll) provided by the hardware manufacturer
of the video card. The OpenGL header and library file are shipped with
Visual Studio.

• Resources. On Windows we simply copy all the resources the appli-
cation needs to the build directory, avoiding a more involved search
mechanism. Unlike Apple, Windows doesn’t use application bun-
dles so some work on placing resources in the final distribution will
have to be done in the installer. CMake has a post build command
mechanism in which tasks can be specified that have to be performed
after the build. The CMake script fragment in Listing ?? copies the
resources to the directory where the executable resides.

FOREACH(NAME ${APP_RESOURCES})

GET_FILENAME_COMPONENT(NAMEWITHOUTPATH ${NAME} NAME)

ADD_CUSTOM_COMMAND(

TARGET ${APP_NAME}

POST_BUILD

COMMAND ${CMAKE_COMMAND} -E copy

${NAME}

${PROJECT_BINARY_DIR}/

${CMAKE_CFG_INTDIR}/

${NAMEWITHOUTPATH})

ENDFOREACH()

The CMake variable PROJECT BINARY DIR is the build directory
of the project, CMAKE CFG INTDIR is the current configuration,
e.g. Debug, Release, etc. so together they form the actual path to
the executable. The ${CMAKE COMMAND} -E copy is CMakes
platform independent copy command.

16 CONTENTS

1.7.2 Mac OS X

The procedure for Mac OS X is similar to Windows. Again, GLUT handles
the windowing interface. We have no OpenGL|ES build for Mac OS X at
the moment of writing.

• Resources. Our Mac OS X application bundles have the standard
hierarchy where the application itself is represented by a bundle
(e.g. HelloWorld.app) containing a /Contents directory, that in turn
contains a /MacOS directory with the actual executable, e.g. Hel-
loWorld, and a /Resources directory containing the resources. Using
a similar CMake post-build construct as we did in Windows, lead
to conflicts with the copying that Xcode performs internally. We
chose to just let Xcode do its job. In CMake we present sources and
resources to ADD EXECUTABLE():

ADD_EXECUTABLE(${APP_NAME} MACOSX_BUNDLE

${APP_SOURCES}

${APP_RESOURCES})

We make sure the resources are labeled as resources, so Xcode will
treat them correctly during the build. That is, make them visible in
the /Resources folder in the Xcode IDE and copy them to the correct
location in the application bundle:

SET_TARGET_PROPERTIES(${APP_NAME} PROPERTIES

RESOURCE "${APP_RESOURCES}")

• Information property list files. Mac OS X application bundles need
an information property list file that enumerates various aspects of
your application in the application bundle, which is located directly
in the root of the bundle. CMake lets you identify a template file
with wildcards, which we name Info.plist.in.

SET(APP_PLIST_FILE

${APP_ROOT}/config/apple/osx/Info.plist.in)

SET_TARGET_PROPERTIES(${APP_NAME} PROPERTIES

MACOSX_BUNDLE_INFO_PLIST ${APP_PLIST_FILE})

CMake will read the Info.plist.in, substitute the wildcards and gener-
ate a Info.plist in a private section of its build directory, e.g. path/-
to/build/CMakeFiles/HelloWorld.dir/Info.plist. This file is linked
and added to the Xcode project files automatically, after which Xcode
will copy it to the root of the application bundle as a pre-build step.

1. The Build Syndrome 17

• Objective-C(++). In order to use C++ code in Objective-C, we need
to compile all sources as Objective-C++ which we can do with:

SET(CMAKE_CXX_FLAGS "-x objective-c++")

We need to add the .mm files to the sources in order for them to be
built, so we include those with:

FILE(GLOB APP_SOURCES ${APP_ROOT}/src/[^.]*.[mmcpph]*)

1.7.3 iOS

iOS is a lot more involved. Only OpenGL|ES is supported on the devices.
OpenGL|ES 2.0 is supported only on newer models (iPhone 3GS and up,
iPad 2). OpenGL|ES 1.1 is supported on all models. Furthermore, a dis-
tinction is made between applications that run on the simulator on the Intel
architecture or on the device itself with the ARM architecture. The sign-
ing and provisioning of applications needs special attention and resource
management is a bit more involved than on Mac OS X.

• Configurating targets. CMake presents a method of cross-compiling
when the build platform is different from the target platform, which
was our first approach to creating iOS applications, resulting in differ-
ent so called toolchain files for device and simulator. This turned out
to be an unnecessary in-between step. The compiler can be the de-
fault compiler (Apple LLVM compiler 3.0 for Xcode 4.2) also used for
Mac OS X builds. The base SDK is selected via the CMAKE OSX SYSROOT
variable. The CMake script fragment for iOS 5.0:

SET(IOS_BASE_SDK_VER "5.0"

CACHE PATH "iOS Base SDK version")

SET(IOS_DEVROOT

"/Developer/Platforms/iPhoneOS.platform/Developer")

SET(IOS_SDKROOT "${IOS_DEVROOT}/SDKs/

iPhoneOS${IOS_BASE_SDK_VER}.sdk")

SET(CMAKE_OSX_SYSROOT "${SDKROOT}")

The architecture has to be set:

SET (CMAKE_OSX_ARCHITECTURES

"$(ARCHS_STANDARD_32_BIT)")

18 CONTENTS

which will result in the standard armv7 setting. We set the target
to create universal applications for both iPad and iPhone. The rep-
resentation “1,2” will be translated correctly to “iPhone/iPad” in
Xcode:

SET_TARGET_PROPERTIES(${APP_NAME} PROPERTIES

XCODE_ATTRIBUTE_TARGETED_DEVICE_FAMILY "1,2")

SET_TARGET_PROPERTIES(${APP_NAME} PROPERTIES

XCODE_ATTRIBUTE_DEVICES "Universal")

We can set the minimal iOS deployment version, iOS 4.3 in this case:

SET_TARGET_PROPERTIES(${APP_NAME} PROPERTIES

XCODE_ATTRIBUTE_IPHONEOS_DEPLOYMENT_TARGET 4.3)

• Frameworks. The different frameworks needed for linking can be
added via linker flags. They will not be clearly visible in the Xcode
IDE, but the applications link correctly:

Enumerate frameworks to be linked to on iOS...

SET(IOS_FRAMEWORKS ${IOS_FRAMEWORKS} OpenGLES)

SET(IOS_FRAMEWORKS ${IOS_FRAMEWORKS} UIKit)

SET(IOS_FRAMEWORKS ${IOS_FRAMEWORKS} Foundation)

SET(IOS_FRAMEWORKS ${IOS_FRAMEWORKS} CoreGraphics)

SET(IOS_FRAMEWORKS ${IOS_FRAMEWORKS} QuartzCore)

...

FOREACH(NAME ${IOS_FRAMEWORKS})

SET(CMAKE_EXE_LINKER_FLAGS

"${CMAKE_EXE_LINKER_FLAGS} -framework ${NAME}")

ENDFOREACH()

• Effective platforms. New in the latest version of CMake, 2.8.6, is
the concept of effective platforms. Setting this parameter makes sure
that if we switch between device or simulator schemes in the Xcode
IDE, the correct build path to the corresponding library is automat-
ically selected by Xcode. This will be either path/to/build/[config]-
iphoneos or path/to/build/[config]-iphonesimulator, where config rep-
resents your current configuration, Debug, Release, etc.

SET(CMAKE_XCODE_EFFECTIVE_PLATFORMS

-iphoneos;-iphonesimulator)

1. The Build Syndrome 19

• Information Property List Files. As in Mac OS X builds, an Info.plist
property list file is needed in the bundle. In CMake, they are treated
similar to the Mac OS X builds, we only provide a different template
because iOS has some additional properties like orientations of the
device and minimal device requirements, e.g. gyroscope, gps.

SET(PLIST_FILE

${APP_ROOT}/config/apple/ios/Info.plist.in)

• Interface Builder. Xib files are Interface Builder User Interface files.
As a pre-build step Xcode compiles them into binary nib files and
adds them to the bundle, but only if they are properly identified as
resource. The CMake script fragment:

FILE(GLOB XIB_FILES

${APP_ROOT}/config/apple/ios/*.xib) # Gather xib files

SET_TARGET_PROPERTIES(${APP_NAME} PROPERTIES

RESOURCE "${XIB_FILES}")

• Provisioning and code signing. Provisioning and code signing is one
of the more error prone new aspects of iOS development. After sub-
scribing to the Apple Developer Program a developer will have to
spend quite some time in the “iOS Provisioning Portal” on the Ap-
ple Developer website. First, developer and distribution certificates
have to be generated that can be added to the personal keychain.
For each application, we generate an application identifier called the
AppID and generate developer, AdHoc and AppStore distribution
provisioning profiles called *.mobile-provisioning files that need to
be linked with our bundle. Without those we can only run appli-
cations in the simulator. With a developer provisioning profile, we
can run and debug our application on the device that is tethered to
our development machine directly from Xcode. With the AdHoc dis-
tribution, we can create a so called archive that can be sent around
and installed locally on a limited set of trusted devices via iTunes.
We need to know and enumerate the unique UID-keys of these de-
vices in advance. The AppStore distribution allows us to distribute
our application via the AppStore after it is approved by Apple. The
App ID in reversed domain notation is set through the CMake MA-
COS BUNDLE GUI IDENTIFIER variable. This entry will also be
substituted in the Info.plist file via a wildcard as value for the CF-
BundleIdentifier key:

20 CONTENTS

SET(IOS_APP_IDENTIFIER nl.cthrough.helloworld)

this has to match to your App ID (case sensitive)

SET(MACOSX_BUNDLE_GUI_IDENTIFIER ${IOS_APP_IDENTIFIER})

The provision profile is a separate setting:

SET(IOS_CODESIGN_ENTITLEMENTS

${APP_ROOT}/config/apple/ios/

entitlements/EntitlementsDebug.plist)

replace with EntitlementsDistributionAdHoc.plist or

EntitlementsDistributionAppStore.plist

SET_TARGET_PROPERTIES(${APP_NAME} PROPERTIES

XCODE_ATTRIBUTE_CODE_SIGN_ENTITLEMENTS

${IOS_CODESIGN_ENTITLEMENTS})

• Archiving. Archiving consists of creating an archive for distribution,
either AdHoc or AppStore. To create a successful archive we have to
make sure that in Xcode the skip install property is not set for the
application, and set for static libraries which is the CMake default.
Furthermore we make sure that the path to an installation directory
is not empty:

SET_TARGET_PROPERTIES(${APP_NAME} PROPERTIES

XCODE_ATTRIBUTE_SKIP_INSTALL NO)

SET_TARGET_PROPERTIES(${APP_NAME} PROPERTIES

XCODE_ATTRIBUTE_INSTALL_PATH "/Applications")

We also have to make sure that in the code signing field a valid
iPhone Distribution as opposed to an iPhone Developer profile is set.
Unfortunately, with the latest version of CMake, it is not yet possible
to set different values for different configurations in Xcode, but this
feature is on the road map for the next version (2.8.7). We hope to
be able to do the following:

SET(IOS_CODE_SIGN_IDENTITY_DEVELOPER

"iPhone Developer"

CACHE STRING "code signing identity")

For developing

SET(IOS_CODE_SIGN_IDENTITY_DISTRIBUTION

"iPhone Distribution"

CACHE STRING "code signing identity")

AdHoc or AppStore distribution

BIBLIOGRAPHY 21

SET_TARGET_PROPERTIES(${APP_NAME} PROPERTIES

XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY[variant=Debug]

${IOS_CODE_SIGN_IDENTITY_DEVELOPER})

SET_TARGET_PROPERTIES(${APP_NAME} PROPERTIES

XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY[variant=Release]

${IOS_CODE_SIGN_IDENTITY_DISTRIBUTION})

Instead of manually changing the value of the code sign identity, like
we have to do now:

SET(IOS_CODE_SIGN_IDENTITY "iPhone Developer"

CACHE STRING "code signing identity")

Change to iPhone Distribution for archiving

SET_TARGET_PROPERTIES(${APP_NAME} PROPERTIES

XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY

${RT_CODE_SIGN_IDENTITY})

1.8 Conclusion

Fortunately, the last decade has shown an incredible increase in the num-
ber of community-driven software projects aiming to help deal with the
complexities of cross-platform development (Boost, CMake) and help to
avoid overly complex codebases when targeting different OpenGL versions
(GLEW, GLUT). Unfortunately, the task of selecting the best set of these
projects is a difficult one. There are many alternatives to the selection we
made but we believe that we have made the most sensible choice at this
time.

We would like to thank contributors from the very active CMake com-
munity, especially David Cole and Michael Hertling. And George van Ven-
rooij, for pointing out CMake in the first place.

Bibliography

[Boost] Boost. “Boost C++ Libaries.” http://www.boost.org. Portable,
peer-reviewed C++ libraries.

[CMake] CMake. “CMake - Cross Platform Make.” http://www.cmake.
org. A cross-platform, open-source, build system.

[Couwmans] Erwin Couwmans. “Bullet Physics Library.” http://
bulletphysics.org. A Collision Detection and Rigid Body Dynamics
Library.

22 BIBLIOGRAPHY

[EGL] EGL. “EGL - Native Platform Interface.” http://www.khronos.
org/egl. A native platform graphics interface for openGL and OpenVG
maintained by Khronos.

[GLEW] GLEW. “GLEW - The OpenGL Extension Wrangler Library.”
http://glew.sourceforge.net. GLEW, the OpenGL Extension Wrangler
by Milan Ikits and Nigel Stuart.

[GLX] GLX. “GLX - Wikipedia, the free encyclopedia.” http://en.
wikipedia.org/wiki/GLX. OpenGL Extension to the X Window Sys-
tem.

[implementations] implementations. “OpenGL implementations.” http:
//www.opengl.org/documentation/implementations. OpenGL imple-
mentations.

[Kilgard] Mark Kilgard. “GLUT - The OpenGL Utility Toolkit.” http:
//www.opengl.org/resources/libraries/glut/. The OpenGL Utility
Toolkit.

[Olszta] Pawel W. Olszta. “FreeGLUT - The OpenSourced alternative to
GLUT.” http://freeglut.sourceforge.net/. The OpenSourced alterna-
tive to GLUT.

[premake] premake. “premake — build script generation.” http://
premake.sourceforge.net/. Premake, build script generation.

[QT] QT. “Qt - A cross-platform application and UI framework.”
http://qt.nokia.com/products. A cross-platform GUI API by Troll-
Tech/NOKIA.

[RenderTools] RenderTools. “RenderTools.” http://rendertools.dynamica.
org. A (lightweight) OpenGL based scenegraph library by J. van der
Spek.

[toolkits] toolkits. “OpenGL Toolkits.” http://www.opengl.org/wiki/
Related toolkits and APIs#Context.2FWindow/Toolkits. OpenGL
Toolkits.

[waf] waf. “waf - The meta build system - Google Project Hosting.” http:
//code.google.com/p/waf/. Waf - The meta build system - Google
Project Hosting.

[WGL] WGL. “WGL (software) - Wikipedia, the free encyclopedia.”
http://en.wikipedia.org/wiki/WGL (software). The windowing system
interface to the Microsoft Windows implementation of the OpenGL
specification.

